Теперь мы точно понимаем, как считать вероятность отдельного события, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.
Вероятность нескольких событий:
Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:
1. Если нужно первое И второе событие, то умножаем.
2. Если нужно первое ИЛИ второе событие, то складываем (если события не могут совпасть).
Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны P1=0,7, P2=0,6. Какова вероятность попадания обоими орудиями одновременно при одном залпе?
Решение. Вероятности каждого из событий в отдельности уже даны, нужно только понять, какой знак поставить. Нам нужно, чтобы произошло первое и второе событие одновременно, значит, умножаем.
P= P1· P2 = 0,7· 0,6 = 0,42.
Пример. Вероятность того, что в магазине будет продана пара мужской обуви 44-го размера, равна 0,12, 45-го – 0,04, 46-го и большего – 0,01. Какова вероятность того, что будет продана пара мужской обуви не меньше 44-го размера?
Решение. Снова вероятности каждого из событий нам даны. Что будем делать с ними? Нам подходят события: продана обувь 44-го размера ИЛИ продана обувь 45-го размера ИЛИ продана обувь 46-го и выше размеров. Значит, складываем вероятности каждого из событий:
P = 0,12 + 0,04 + 0,01 = 0,17.
Для понимания практического применения теории вероятности давайте рассмотрим еще вот такой шуточный пример. В местном зоопарке живет мартышка (можно дать ей имя). Допустим, что у нее есть старенькая пишущая машинка с 26 клавишами для букв латинского алфавита, одна – с точкой, одна – с запятой, одна – с вопросительным знаком и один пробел, итого – 30 клавиш. Сидит себе наша мартышка в углу и нажимает клавиши наугад. Любая последовательность букв имеет ненулевую вероятность оказаться напечатанной, а это значит, что есть шанс, что мартышка дословно напечатает пьесы Шекспира. Шансы у нее минимальные, но они точно отличны от нуля. Давайте разберемся, какова вероятность того, что наша мартышка напечатает последовательность из 8 символов “To be or” («быть или не»). Что мы должны для этого сделать? Сначала мы должны посчитать вероятность появления каждого символа. Представим 8 ячеек, в которых окажутся 8 символов, включая пробелы: